
Vulnerability assessment of the VRSpace application

Audited for OpenComputing Ltd

Audited by Mikrotron d.o.o

20210703

Table of contents

[1] Introduction 2
[2] Scope 2
[3] Methodology 2
[4] About Us 2
[5] Executive Summary 3
[6] Code analysis 4
[6.1] SAST 4
[6.2] SonarQube 4
[6.3] Semgrep 5
[6.4] EnumJavaLibs 5
[6.5] jQAssistant 6
[6.6] Gadget inspector 6
[7] IAST 6
[7.1] Contrast Community Edition 7
[8] DAST 8
[8.1] OWASP Zed Attack Proxy (ZAP) 8
[8.2] Burp Scan 9
[8.3] Nikto 9
[8.4] Wapiti 10
[9] Manual code review and custom tooling 11
[9.1] Custom fuzzers 11
[10] Stress testing 14
[10.1] Wsstat 14
[10.2] Curl.sh 14
[11] Dependency Check 15

1

[1] Introduction

This document reports the findings of a security assessment targeting VRSpace
application, carried out by Mikrotron during May and June of 2021.

[2] Scope

• Source code available on Github [https://github.com/jalmasi/vrspace)
• Locally hosted web application

[3] Methodology

Our audit techniques included manual and tool assisted code analysis, user interface
interaction as well as dynamic application security testing and fuzzing.

[4] About Us

Among the other things we do, we offer development services (Java applications and
Arduino projects), installation and system administration of Linux servers and
PostgreSQL DBMS, IT security testing, 3D print workshops, 3D print services, 3D
modeling and many other. Feel free to contact us about it at mikrotron@mikrotron.hr.

We have many years of experience in these fields, but always want to learn something
new - our services can go way beyond the list above.

2

[5] Executive Summary

Identified Vulnerabilities:

• Denial of service through resource exhaustion [MEDIUM]
It is possible to use all websockets from a single source.

• Components with known vulnerabilities [LOW]
Application uses several older version of dependencies that have since been
updated due to vulnerabilities found in them:

- jquery version 3.3.1.min
- bcprov-jdk15on-1.64
- neo4j-java-driver-4.0.2
- Spring-core-5.2.14

• Parameter injection [LOW]
It is possible to inject parameter pair [“parameter”:”value”] that will be
forwarded to other clients within the same world.

3

[6] Code analysis

As a part of our engagement, we performed both tool assisted and manual code
analysis.

[6.1] SAST

Static application security testing, also known as “white-box” testing, utilizes tools,
such as static code analyzers, to scan application’s code in a non-running state, before
the code is compiled.

Tool assisted code analysis was conducted using the following static application
security testing tools:

• AppThreat sast-scan1

• AppThreat dep-scan2
• gSAST3
• semgrep4

• SonarQube5

While sast-scan, dep-scan and gSAST showed a few false positives, SonarQube and
semgrep did not find any security vulnerabilities.

[6.2] SonarQube

SonarQube is an open-source platform for continuous inspection of code quality to
perform automatic reviews with static analysis of code to detect bugs and security
vulnerabilities.

SonarQube did not find any security vulnerabilities.

1 https://github.com/AppThreat/sast-scan
2 https://github.com/AppThreat/dep-scan
3 https://github.com/b0n1t0/gSAST
4 https://github.com/returntocorp/semgrep
5 https://www.sonarqube.org

4

[6.3] Semgrep

Semgrep is a fast, open-source, static analysis tool for finding bugs and enforcing
code standards at editor, commit, and CI time.

Semgrep did not find any security vulnerabilities.

Since standard SAST tools did not find any security vulnerabilities, our next approach
was aimed at the jar file itself.
For that purpose we used the following tools:

• jQAssistant6
• gadgetinspector7
• EnumJavaLibs8

As the application relies on Jackson to deserialize user’s input, thorough inspection of
Jackson implementation and potential deserialization vulnerabilities was conducted
utilizing tools such as EnumJavaLibs and gadgetinspector, following with custom
fuzzer and manual code review.

[6.4] EnumJavaLibs

EnumJavaLibs can be used to discover which libraries are loaded (i.e. available on the
classpath) by a Java application when it supports deserialization.

6 https://jqassistant.org
7 https://github.com/JackOfMostTrades/gadgetinspector
8 https://github.com/redtimmy/EnumJavaLibs

5

[6.5] jQAssistant

While jQAssistant is a primarily QA tool, one of the use cases for the tool is to validate
dependencies between modules of a project. It was used complimentary to manual
code review in order to map relationships and dependencies within the project.

[6.6] Gadget inspector

This project inspects Java libraries and classpaths for gadget chains. Gadgets chains
are used to construct exploits for deserialization vulnerabilities. By automatically
discovering possible gadgets chains in an application's classpath penetration testers
can quickly construct exploits and application security engineers can assess the
impact of a deserialization vulnerability and prioritize its remediation.

Gadget inspector did not find any gadget chains, as shown in the screenshot below.

[7] IAST

Interactive application security testing is a methodology of application testing where
code is analyzed for security vulnerabilities while an application is running. IAST tools
deploy agents and sensors in applications to detect issues in real-time during a test.

6

The application can be run by an automated test or by a human tester to find
vulnerabilities in the application.

[7.1] Contrast Community Edition

Contrast Community Edition9 for Java focuses on software security and delivers real-
time security telemetry from within running code.

As shown in the screenshot above, Contrast CE did not find any security
vulnerabilities.

9 https://www.contrastsecurity.com/contrast-community-edition

7

[8] DAST

Dynamic Application Security Testing is a “black-box” security testing method that
finds security issues in the applications by seeing how the application responds to
specially crafted requests that mimic attacks.

During our engagement the following DAST tools were used:
• Burp Pro Scan10
• OWASP ZAP Scan11
• Nikto12
• Wapiti13

[8.1] OWASP Zed Attack Proxy (ZAP)

OWASP ZAP is an open-source web application security scanner. It is one of the most
active Open Web Application Security Project (OWASP) projects and has been given
Flagship status.

Above is the relevant screenshot from the ZAP Scanning Report. Full report is
enclosed with this document.

10 https://portswigger.net/burp/pro
11 https://www.zaproxy.org
12 https://github.com/sullo/nikto
13 https://github.com/wapiti-scanner/wapiti

8

[8.2] Burp Scan

Burp Suite is an integrated platform for performing security testing of web
applications. Its various tools work seamlessly together to support the entire testing
process, from initial mapping and analysis of an application's attack surface, through
to finding and exploiting security vulnerabilities.

Above is the relevant screenshot from the Burp Scanner Report. Full report is
enclosed with this document.

[8.3] Nikto

Nikto is an Open Source (GPL) web server scanner which performs comprehensive
tests against web servers for multiple items.

Below is the output of nikto scan.

9

[8.4] Wapiti

Wapiti is a web application vulnerability scanner that audits the security of web
applications or websites. It performs "black-box" scans (it does not study the source
code) of the web application by crawling the webpages of the deployed webapp,
looking for scripts and forms where it can inject data. Once it gets the list of URLs,
forms and their inputs, Wapiti acts like a fuzzer, injecting payloads to see if a script is
vulnerable.

Wapiti did not find any vulnerabilities.

10

[9] Manual Code review and custom tooling

Since the standard tooling did not find any vulnerabilities we had to write our own.
For that we had to inspect code-base manually in order to try to find coding practices
that could lead us to possible misuse of legitimate functions.

Manual code review consisted mainly of inspecting code snippets to check if they
contained known patterns that could be exploited. Those included, but were not
limited to: ObjectInputStream, Class.forName method, compareTo(), readResolve()
java.lang.runtime.Runtime.getRuntime, java.lang.runtime.Runtime.exec
java.io.FileInputStream, java.io.FileOutputStream, java.io.FileReader, java.io.FileWriter,
readObject(), readValue(), finalize(), invoke(), Object.equals(), Object.hashCode(),
compare(), as well as enumerating code snippets that deal with user input.

Additionally, as the user input is mainly dealt through Jackson we extensively checked
code to see if there are known Jackson patterns that could lead to deserialization
vulnerabilities. We also checked the code containing for us interesting snippets like:

• com.fasterxml.jackson.databind.ObjectMapper
• ObjectMapper mapper = new ObjectMapper();
• objectMapper.enableDefaultTyping();
• @JsonTypeInfo(use=JsonTypeInfo.Id.CLASS, include=JsonTypeInfo.As.PROPERTY,

property="@class")
• public Object message;
• mapper.readValue(data, Object.class);

At this point we found no codding patterns that could be used maliciously, so our
efforts turned to fuzzing.

[9.1] Custom fuzzers

To limit the scope of fuzzing we first manually checked for possible character escapes
in Java, javascript and html as well as unicode, hex code and html entity
interpretations within the application.

While injecting unicode character displayed some inconsistent behavior in
interpretations of the characters, we deemed none of it exploitable, more so as the
usage of unicode html angle brackets was properly sanitized through regex, while
html escapes, though displayed in our javasrcipt/html client properly, were not
interpreted in it and more importantly within the VRSpace application were treated as
a string, meaning that “<” and “<” were displayed “as is”, same with the “>”
and “>”, instead of “<” and “>” respectively.

11

Sanitization was done through clean regex, so our attempts at regexsploit were
unsuccessful. Clean regex also meant that whole classes of javascript injection
vulnerabilities were mitigated.

Main user interaction with the application is done through json objects delivered
through websockets. We mapped all requests and responses through websockets and
started writing our own fuzzers.

The first fuzzer was based on the python library called kitty14 with messages tailored
to our application, while the response monitoring was done through ZAP proxy and
application’s console. This approach did not yield any results as the application held
well.

Our next attempt was slightly more precise in that we made a custom client in
javascript/html that would serve as a multi-function tool.

Above is the screenshot of our custom tool.

This approach led us to finding minor bugs, that could not be exploited within this
implementation.
However, we deemed it prudent to report them, as they could possibly be exploited in
later implementations that could be built upon this one.

Examples of this included some parameters of json object (“changes” and “properties”
within it) not being thoroughly validated as is shown below:

14 https://github.com/cisco-sas/kitty

12

[1]
{"object":{"Client":0},"changes":{"properties":{"<img src=1
onerror=alert(1)>":"string" ,"number":123.456}}}

[2]
{"object":{"Client":0},"changes":{"properties":{"string":"string","<img src=1
onerror=alert(1)>" :123.456}}}

[3]
{"object":{"Client":0},"changes":{"properties":{"string":"<img src=1
onerror=alert(1)>","number":123.456}}}

[4]
{"object":{"Client":0},"changes":{"<marquee onscroll=confirm(1)>":"Scroll"}}

[5]
{"object":{"Client":0},"changes":{"":"<img src=1
onerror=alert(1)>"}}

[6]
{"object":{"Client":0},"changes":{"userHeight":1.8,"":"<img
src=1 onerror=alert(1)>"}}

[7]
{"object":{"Client":0},"changes":{"wrote":"a","":"<img
src=1 onerror=alert(1)>"}}

[8]
{"object":{"Client":0},"changes":{"name":"changed_name", "<img src=1
onerror=alert(1)>":""}}

[9]
{"object":{"Client":0},"changes":{"position":{"":"<img src=1
onerror=alert(1)>","x":-280,"y":0.00800665094814036,"z":-260},"rotation":
{"x":0.0013085591195910974,"y":0.8224182792713782,"z":0}}}

[10]
{"object":{"Client":0},"changes":{"position":{"x":-280,"y":0.00800665094814036,"z":-
260},"rotation":{"":"<img src=1
onerror=alert(1)>","x":0.0013085591195910974,"y":0.8224182792713782,"z":0}}}

13

All the requests above would be forwarded to other clients in the same world and
some [1 and 2] would be served to the new clients that are connecting later and
entering the same world. However, within this implementation the application would
note an error in the browser, “vrspace-ui.js:2474:15”, with the message:
“Ignoring unknown event to [object Object]: ”.

The last two examples [9 and 10] would produce no errors in browser, however
javascript would not be executed, though all the messages would be forwarded as
they were written.

[10] Stress testing

In order to test the number of websocket connections the following tools were used:
wsstat, curl and a custom javascript client. All showed similar results.

[10.1] Wsstat

Wsstat15 is a websocket monitoring and visualization tool.
It aims to make diagnosing problems and understanding websocket infrastructure
easy and visual.

Above is the screenshot showing the tool in action. It shows the resource exhaustion
of the server

[10.2] Curl.sh

We get similar results with a bash script that is based on the curl with the header
specified to upgrade to websocket connection. We get resource exhaustion at around
3960 served connections.

15 https://github.com/Fitblip/wsstat

14

As a side note, socket size test showed websocket message being limited at 8192
bytes in the server-0.2.3-SNAPSHOT.jar version.

[11] Dependency Check

Dependency-Check16 is a Software Composition Analysis (SCA) tool that attempts to
detect publicly disclosed vulnerabilities contained within a project's dependencies. It
does this by determining if there is a Common Platform Enumeration (CPE) identifier
for a given dependency. If found, it will generate a report linking to the associated CVE
entries.

16 https://github.com/jeremylong/DependencyCheck

15

Below is a screenshot from the report generated by Dependency-Check. Full report is
enclosed with this document.

Furthermore, we inspected currently open bugs in projects integrated within VRSpace
application, namely Jackson17, Tomcat18 and neo4j19 and did not find any approach
that could compromise the application, more so as the potential vulnerability would
not necessarily change the structure of the VRSpace application since the potential
vulnerability would be in a third party component.

We also tested all the imported classes from the application for potential Jackson
gadget chains, albeit not extensively, during our fuzzing tests, as well as tested the
application to check if it uses previously known and blacklisted gadgets20. However,
multiple prerequisites were not satisfied2122 in order for this approach23 to be feasible.

17 https://github.com/FasterXML/jackson-databind/issues/
18 https://bz.apache.org/bugzilla/buglist.cgi?no_redirect=0&quicksearch=tomcat
19 https://github.com/neo4j/neo4j/issues/
20 https://github.com/FasterXML/jackson-databind/blob/master/src/main/java/com/fasterxml/jackson/

databind/jsontype/impl/SubTypeValidator.java
21 https://cowtowncoder.medium.com/on-jackson-cves-dont-panic-here-is-what-you-need-to-know-

54cd0d6e8062#da96
22 https://blog.doyensec.com/2019/07/22/jackson-gadgets.html
23 https://adamcaudill.com/2017/10/04/exploiting-jackson-rce-cve-2017-7525/

16

